Data Sheet 1

WEDNESBUR **COPPER TUBE & FITTINGS**

BLACK LABEL EN 1057: 1996

INTRODUCTION:

The British Standard EN 1057:1996 (brand name Black Label) specifies the requirements for copper tube in straight lengths to half hard temper. The tube is manufactured from phosphorus deoxidised (non arsenical) copper alloy Cu-DHP. Tube complying to this table is suitable for hot and cold water services, gas services, sanitation and central heating. This tube when buried should be factory plastic coated.

APPROVAL:

Black Label conforms to the requirements of the British Standards Institution and Wednesbury have earned the right to use the Kitemark as evidence of compliance of this tube to the British Standard EN 1057:1996 and have Registered Firm Status to BS EN ISO 002:1994.

MARKING:

Tube from 10mm to 54mm inclusive, is permanently die stamped 'Wednesbury (Kitemark) EN 1057 Black Label' and date of manufacture at intervals of not more than 600mm. Sizes from 6mm but less than 10mm or greater than 54mm shall at least be similarly marked legibly at both ends.

JOINTING:

These tubes are suitable for connecting by means of capillary or compression fittings to BS/EN silver brazing, bronze or autogenous welding.

NOMINAL DIMENSIONS AND MAX WORKING PRESSURE:

TOLERANCE ON OUTSIDE DIAMETER:

TOLERANCES ON WALL THICKNESS:

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nominal outside diameter Ømm	mm	MAX WORKING PRESSURE BAR	out diar	ninal side neter Z nm		on nominal ter (mm) Applicable to any diameter 2)	Nominal outside diameter Ø mm	wallthi	ences on ckness e¹) e ≥ 1mm		
over including all tempers temper 10 0,6 77 12 0,6 63 15 0,7 58 18 0,8 56 22 0,9 51 28 0,9 40 35 1,2 42 42 1,2 35 54 76,1 88,9 ±0,07 ±0,07 ±0,30 108 1,5 17 108 1,5 17 108 1,5 17 108 1,5 17 108 1,5 17 108 1,5 17 108 1,5 17 108 1,5 17 108 1,5 17 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7	6	0,6	133									
10 0,6 77 12 0,6 63 61) 18 ±0,04 ±0,09 15 18 0,8 56 18 28 ±0,05 ±0,10 28 0,9 40 35 1,2 42 1,2 35 76,1 88,9 ±0,07 ±0,20 54 1,2 27 66,7 1,2 20 88,9 108 ±0,07 ±0,30 76,1 1,5 24 108 1,5 17 108 1,5 17 108 159 ±0,02 ±0,40 $\pm 0,09$	8	0,6	97	over		alltemners		<18	+10	±13		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	0,6	77									
18	12	0,6	63	61)	18	±0,04	±0,09					
18 0,8 56 22 0,9 51 28 54 $\pm 0,06$ $\pm 0,11$ 28 0,9 40 35 1,2 42 42 1,2 35 54 1,2 27 66,7 1,2 20 88,9 108 $\pm 0,07$ $\pm 0,30$ 76,1 1,5 24 108 1,5 17 108 1,5 17 108 1,5 17 108 1,5 17 108 1,5 17 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,7 1,40 <td>15</td> <td>0,7</td> <td>58</td> <td>18</td> <td>28</td> <td>±0.05</td> <td>±0.10</td> <td></td> <td></td> <td></td>	15	0,7	58	18	28	±0.05	±0.10					
28 0,9 40 54 76,1 ±0,07 ±0,15 1) Including deviation from concentricity 2) ± 10% for R250 (half har tubes of 35mm, 42mm at 54mm diameter with a with including the solution from concentricity 2) ± 10% for R250 (half har tubes of 35mm, 42mm at 54mm diameter with a with including deviation from concentricity 2) ± 10% for R250 (half har tubes of 35mm, 42mm at 54mm diameter with a with including deviation from concentricity 2) ± 10% for R250 (half har tubes of 35mm, 42mm at 54mm diameter with a with including deviation from concentricity 3.	18	0,8	56	10	20	10,03	20,10	≥18	±10	±15 ²)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22	0,9	51	28	54	±0,06	±0,11					
35 1,2 42 42 1,2 35 54 1,2 27 66,7 1,2 20 76,1 1,5 24 108 1,5 17 108 159 ±0,02 ±0,40 76,1 1,5 24 108 159 ±0,02 ±0,40 NOTE: Concentricity (uniformity	28	0,9	40						Contraction of the Contraction o			
42 1,2 35 76,1 88,9 ±0,07 ±0,20 54 1,2 27 66,7 1,2 20 88,9 108 ±0,07 ±0,30 76,1 1,5 24 108 1,5 17 108 1,5 17 108 1,5 1,5 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,7 108 1,5 1,4 The state of the result of t	35	1,2	42	54	76,1	±0,07	±0,15	1) Including deviation from				
54 1,2 27 66,7 1,2 20 88,9 108 ±0,07 ±0,30 76,1 1,5 24 108 1,5 17 108 159 ±0,02 ±0,40 NOTE: Concentricity (uniformity	42	1,2	35	76.1	88.9	+0.07	+0.20					
66,7 1,2 20 88,9 108 ±0,07 ±0,30 54mm diameter with a withickness of 1,2mm 76,1 1,5 24 108 159 ±0,02 ±0,40 NOTE: Concentricity (uniformity	54	1,2	27				==,==					
76,1 1,5 24 108 159 ±0,02 ±0,40 NOTE: Concentricity (uniformity	66,7	1,2	20	88,9	108	±0,07	±0,30	54mm di	iameter w	ith a wall		
108 1,5 17 Concentricity (uniformity	76,1	1,5	24					thicknes	s of 1,2mm	n		
100 (1 6) 17	108	1,5	17	108	159	±0,02	±0,40		ity (unifo	ermity of		
	133	1,5	14	1) Includi	ing 6mm.			wallthickne	ess) is conf	trolled by		
159 2,0 15 2) Including deviation from circular form. tolerance on wall thickness.	159	2,0	15			n from circula	r form.	tolerance on wall thickness.				

MECHANICAL PROPERTIES:

	Material temper		ninal side neter Ø .m	Tensile Strength Rm MPa	Elongation A %	Hardness (indicative) HV 5 VPN
EN 1173	term	min.	max.	min	min.	
R220	annealed	6	54	220	40	(40 - 70)
P250	Page half		66,7	250	30	(75 400)
R250	hard	6 .	159	250	20	(75 - 100)
R290	hard	6	267	290	. 3	(min. 100)

NOTE 1: Hardness figures in parentheses are not requirements of this standard but are given for guidance purposes only

NOTE 2: MPa is equivalent to 1 N/mm2

BENDING:

Wednesbury Black Label tube can be bent with ease on bending machines or with internal springs provided they are of the correct size. Manufacturers of bending machines such as Hilmor, Tubela, Consort, etc, are able to supply hand or free standing machines. Bending by spring is normally limited to a maximum size of 22mm diameter, but tight radii bends are not advised.

WEIGHTS:

Size of Tube mm	No of Tubes per Bundle	Bundles per tonne 3m lengths	Bundles per tonne 6m lengths	Kg per Metre
6	20	184	92	0.096
8	20	134	67	0.124
10	20	106	53	0.158
12	20	87	44	0.191
15	10	120	60	0.280
18	10	87	43	0.384
22	10	60	30	0.531
28	10	50	25	0.682
35	5	59	29	1.134
42	5	49	24	1.369
54	- 3	63	31	1.772
66.7	1	152	76	2.197
76.1	1	106	53	3.134
108	1	75	37	4.472
133	1	60	30	5.531
159	1	38	19	8.800

Based on theoretical weights

LENGTHS & PACKAGING:

Lengths & Packaging Sizes mm	6	8	10	12	15	18	22	28	35	42	54	67	76	108	133	159
6m Lengths	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
3m Lengths	*	*	*	*	*	*	1.75	*	*	*	*	*	*	*	*	*
Other Lengths	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
20 Tube Bundle	*	*	*	*												
10 Tube Bundle					*	*	*	*								
5 Tube Bundle									*	*						
3 Tube Bundle											*					
Single Tubes												*	*	*	*	*
Black End Cap				8	*		*	*	*	*	*					
SPECIAL FINISHES																
Protec Blue	*	*	*	*	*		*	*	*	*	*					81
Protec Green	*	*	*	*	*		*	*	*	*	*					
Protec Yellow	*	*	*	*	*		*	*	*	*	*					
Protec White	*	*	*	*	*		*	*	*	*	*					
Protec 2000 White	*	*	*	*	*		*	*								
Chromium Plated	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Degreased	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
	100000			*	*	*	*	*	*	*	*	*	*	*	*	*
Degreased Oxygen					11.600	1						10000000				

Copyright: Reproduction of the leaflet in part or full is not allowed unless permission is first obtained from Wednesbury Copper Tube & Fittings.

WEDNESBURY TEN 1057 15x0.7mm (Month/Year) BLACK LABEL HI

WEDNESBURY COPPER TUBE & FITTINGS

PROTEC COPPER TUBE BS EN 1057 : 1996

INTRODUCTION:

PROTEC is a brand name for Wednesbury Polyethylene coated copper tube. The copper tube coated with Polyethylene is to British Standard EN 1057:1996. This standard specifies the requirements for copper tubes in straight lengths to half hard, hard temper or coils in the annealed ondition. The tube is manufactured from phosphorus deoxdised (non arsenical) copper alloy Cu-DHP and the plastic to BS 3412. Tube complying to these tables is suitable for hot and cold water services, gas services, sanitation and central heating. These plastic coated tubes will withstand temperatures up to 95°C (203°F) with occasional peaks up to 110°C (230°F). The plastic is tightly extruded on to the copper tube in a seamless and continuous run, it is durable and more effective than some other methods of protection against environments which may e aggressive to the copper tube. The plastic coatings are applied in various colours to identify its use in service. Blue and green for water, yellow ochre for gas and white for central heating.

APPROVAL:

Wednesbury tube EN 1057 conform to the requirements of the British Standards Institution and Wednesbury have earned the right to use the Kitemark as evidence of compliance of these tubes to the British Standard BS EN 1057 and have Registered Firm status to BS EN ISO 9002:1994. It also bears the symbol of the British Mark scheme.

MARKING:

Tube from 10mm to 54mm inclusive is marked 'Wednesbury (Kitemark) EN 1057,

British' at intervals of 1000mm. The copper tube is permanently die marked every 600mm in a similar manner together with the date of manufacture, to the relevant Label.

JOINTING:

These tubes are suitable for connecting by means of capillary or compression fittings to BS 864:Part 2:1983, silver brazing, bronze or autogenous welding. When jointing cut the plastic and fold back (see photograph), make joint and return the plastic to its original position, cover split plastic and joint with an

impervious plastic tape to give continuous protection.

BENDING:

With the exception of hard temper, Wednesbury Protec tube can be bent with ease on bending machines or with internal springs. These machines must be specific for bending plastic coated copper tube which have special size formers to account for the increased diameter. Manufacturers of bending machines such as Hilmor, Tubela, Consort etc are able to supply hand or free standing machines of this type. Bending by spring is normally limited to a maximum size of 22mm diameter. Internal springs are available for tube up to this size but tight radii bends are not advised.

LENGTHS & PACKAGING:

Sizes mm	6	8	10	12	15	18	22	28	35	42	54
6M Lengths	*	*	*	*	*	*	*	*	*	*	*
3M Lengths	*	*	*	*	*	*	*	*	*	*	*
20 Bundle	*	*	*	*							
10 Tube Bundle					*	*	*	*			
5 Tube Bundle									*	*	
3 Tube											*
Plastic Sleeved	*	*	* 💇	* *	*	*	*	*	*	*	*

FINISHES:

Sizes mm	6	8	10	12	15	18	22	28	35	42	54
Protec Blue	*	*	*	*	*		*	*	*	*	*
Prortec Green	*	*	*	*	*		*	*	*	*	*
Protec Yellow	*	* * -	* -	*	*		*	*	*	*	*
Protec White	*	*	*	*	*		*	*	*.	*	*
Protec 2000 White	*	*	*	*	*		*	*			
Degreased	*	*	*	*	*	*	*	*	*	*	*
Degreased Oxygen	*	*	*	*	*	*	*	*	*	*	*
Degreased Medical	*	*	*	*	*	*	*	*	*	*	*

DIMENSIONS:

Size of Tube mm	Nominal Diameter Plastic mm	Nominal Thickness Plastic mm
6	8.00	1.00
8	10.00	1.00
10	12.00	1.00
12	14.00	1.00
15	17.00	1.00
18	20.00	1.00
22	24.00	1.00
28	30.00	1.00
35	38.00	1.50
42	45.00	1.50
54	57.00	1.50

Be sure not to aim the blowtorch directly at the plastic.

Fold back to reveal copper.

When the joint is complete and cool, fold back the plastic coat and wrap the joint to give continuity of protection.

 $Copyright: Reproduction \ of \ the \ leaflet \ in \ part \ or \ full \ is \ not \ allowed \ unless \ permission \ is \ first \ obtained \ from \ Wednesbury \ Copper \ Tube \ \& \ Fittings.$

WEDNESBURY COPPER TUBE TO EN 1057 (KITEMARK, SIZE, TEMPER,) PROTEC

WEDNESBURY

COPPER TUBE & FITTINGS

PROTEC 2000 COPPER TUBE EN1057: 1996

INTRODUCTION:

PROTEC 2000 is a brand name for Wednesbury Polyethylene coated copper tube, the inner surface of which is castellated to provide air gaps which run the length of the tube. These gaps trap air which forms a thermal barrier to reduce surface temperature, transmitted noise and condensation levels, together with a reduction of heat loss when buried.

he copper tube coated with Polyethylene is to EN 1057. This standard specifies the requirements for copper tubes in straight lengths to half hard, hard temper or coils in the annealed condition. The tube is manufactured from phosphorus deoxdised (non arsenical) copper alloy Cu-DHP and the plastic to BS 3412. Tube complying to these tables is suitable for hot and cold water services, gas services, sanitation and central heating. These tubes when plastic coated, will withstand temperatures of up to 95°C (203°F) with occasional eaks of up to 110°C (230°F). The plastic is tightly extruded on to the copper tube in a seamless and continuous run. It is durable and more effective than some other methods of protection against environments which may be aggressive to the copper tube.

APPROVAL:

Wednesbury Tube EN 1057 conform to the requirements of the British Standards Institution and Wednesbury have earned the right to use the Kitemark as evidence of compliance of these tubes to the British Standard EN 1057 and have Registered Firm status to BS EN ISO 9002:94 FM 452. It also bears the symbol of the British Mark scheme.

MARKING:

Tube from 8m to 28mm inclusive is permanantly marked 'Wednesbury (Kitemark) EN 1057

British' at intervals of 1000mm. The copper tube is prominently die marked in a similar manner together with the date of manufacture, to the relevant Label.

JOINTING:

These tubes are suitable for connecting by means of capillary or compression fittings to BS 864: Part 2:1983, silver brazing, bronze or autogenous welding. When jointing cut the plastic and fold back (see photograph), make joint and return the plastic to its original position, cover split plastic and joint with an impervious plastic tape to give continuous protection.

BENDING:

Wednesbury Protec 2000 annealed tube can be bent with ease, on bending machines or with internal springs. Bending machines are available with formers designed to accommodate the increased diameter for Protec 2000 from Hilmor, Tubela, Consort and Rothenburger etc. These machines are recommended for use with soft temper copper tube. If in doubt, refer to the bending machine manufacturer. Manufacturers of bending machines are able to supply hand or free standing machines of this type. Bending by spring is normally limited to a maximum size of 22mm diameter. Internal springs are available for tube up to this size but tight radii bends are not advised.

LENGTHS & PACKAGING:

Sizes mm	6	8	10	12	15	22	28	
6M Lengths	*	*	*	*	*	*	*	
3M Lengths	*	*	*	*	*	*	*	
Other Lengths	*	*	*	*	*	*	*	
20M Coils	*	*	*	*	*	*	*	
Other Coils Length	*	*	*	*				
20 Tube Bundle	*	*	*	*				
10 Tube Bundle					*	*	*	
Plastic Sleeved	*	*	*	*	*	*	*	

FINISHES:

Sizes mm	6	. 8	10	12	15	22	28	
Protec 2000 White	*	*	*	*	*	*	*	

DIMENSIONS AND WEIGHTS:

Size of Tube mm	Overall Diameter mm	Nominal Thickness Plastic mm
6	10	2.00
8	12	2.00
10	14	2.00
12	16	2.00
15	19	2.00
18	22	2.00
22	27	2.50
28	33	2.50

12-14-47 PR-C 2-1003 - EM 1057 X 211-0-105

Fold back to reveal copper.

The graph below indicates the lower surface temperatures of Protec 2000 measured against bare copper in air.

Be sure not to aim the blowtorch directly at the plastic.

The graph below indicates the reduction in heat loss which can be achieved by using Protec 2000.

When the joint is complete and cool, fold back the plastic coat and wrap the joint to give continuity of protection.

Copyright: Reproduction of the leaflet in part or full is not allowed unless permission is first obtained from Wednesbury Copper Tube & Fittings.

WEDNESBURY COPPER TUBE TO EN 1057 (KITEMARK, SIZE, TEMPER,) PROTEC 2000

